Adsorption Studies of Oil Spill Clean-up Using Coconut Coir Activated Carbon (CCAC)
Ukpong Anwana Abel,
Gumus Rhoda Habor,
Oboh Innocent Oseribho
Issue:
Volume 8, Issue 2, March 2020
Pages:
36-47
Received:
25 March 2020
Accepted:
9 April 2020
Published:
23 April 2020
Abstract: The adsorption of crude oil from water by using Potassium hydroxide (KOH) prepared from coconut coir activated carbon CCACKOH was investigated by batch adsorption under varying parameters such as adsorbent dosage, contact time, initial oil concentration, temperature and agitation speed. The morphological modification significantly increased the hydrophobicity of the adsorbent, thus creating a CCAC with a much better adsorption capacity for crude oil removal having a maximum adsorption capacity of 4859.5 mg/g at 304 K as evidently proven by FTIR and SEM analysis. The experimental results showed that the percentage of crude oil removal increased with an increase in adsorbent dosage, contact time and decrease in initial oil concentration. The experimental isotherm data were analysed using Langmuir, Freundlich, Temkin, Toth, Sip and Redlich-Peterson isotherm equations and the best fitted isotherm model was Freundlich model with a high correlation coefficient (R2 = 0.999). The kinetic data were properly fitted into various kinetic models with Pseudo-second order model showing best fit having a correlation coefficient (R2 = 0.999) and Boyd model revealed that the adsorption was controlled by internal transport mechanism and film-diffusion was the major mode of adsorption. The crude oil adsorption was chemisorption and endothermic in nature (ΔH° = 134 KJ/mol.K) and the positive value of entropy (ΔS° = 0.517 KJ/mol.K) showed an increase in disorder and randomness at the adsorbent-adsorbate interface during the adsorption of crude oil from water. The decrease in Gibbs energy (ΔG°) with increasing temperature indicated an increase in the feasibility and spontaneity of the adsorption at higher temperatures. The prepared adsorbent showed significant capability to be used as a low-cost, re-generable and eco-friendly adsorbent in oil spill clean-up.
Abstract: The adsorption of crude oil from water by using Potassium hydroxide (KOH) prepared from coconut coir activated carbon CCACKOH was investigated by batch adsorption under varying parameters such as adsorbent dosage, contact time, initial oil concentration, temperature and agitation speed. The morphological modification significantly increased the hyd...
Show More
Adsorption Studies of Silica Adsorbent Using Rice Husk as a Base Material for Metal Ions Removal from Aqueous Solution
Rose Erdoo Kukwa,
Donald Tyoker Kukwa,
Ahola David Oklo,
Terungwa Thaddeus Ligom,
Benjamin Ishwah,
John Ajegi Omenka
Issue:
Volume 8, Issue 2, March 2020
Pages:
48-53
Received:
18 March 2020
Accepted:
8 April 2020
Published:
28 April 2020
Abstract: This study was carried out to evaluate the efficiency of metal ions removal from aqueous solution using silica adsorbent. Silica was extracted from rice husk using sol-gel method. The silica was modified with 1.0 M of nitric acid. Using batch adsorption technique, the effects of temperature, pH, contact time and adsorbent dosage on adsorption process of Cu (II), Zn (II), Mn (II) and Pb (II) ions were studied using standard solutions of their salts. Percentage removal of the metals ions studied decreased as the temperature was varied between 28°C and 43°C. Percentage removal of metal ions studied showed an increase at different pH varying from 4 to 8 and decreased after the pH 8. The variation of contact time between 2 and 8 hours showed a sharp increase in metals removal from 2 to 6 hours but a slow increase after 6 hours. The percentage removal of metal ions increase as the adsorbent dosage increased between 0.5 g and 2.0 g. The maximum percentage removal of metal ions was found to be 99.48%. The general observed trend of efficiency being Cu>Pb>Zn>Mn. The experimental data was also tested using adsorption isotherm models of Langmuir and Freundlich and Langmuir model was found to be the best fit for the data.
Abstract: This study was carried out to evaluate the efficiency of metal ions removal from aqueous solution using silica adsorbent. Silica was extracted from rice husk using sol-gel method. The silica was modified with 1.0 M of nitric acid. Using batch adsorption technique, the effects of temperature, pH, contact time and adsorbent dosage on adsorption proce...
Show More