-
Energy Saving Research on Multi-effect Evaporation Crystallization Process of Bittern Based on MVR and TVR Heat Pump Technology
Deming Yang,
Bingqin Leng,
Tao Li,
Ming Li
Issue:
Volume 8, Issue 3, May 2020
Pages:
54-62
Received:
22 April 2020
Accepted:
4 June 2020
Published:
17 June 2020
Abstract: This work keeps an eye on the energy saving research on evaporation crystallization process of bittern. Based on the thermo sensitivity of solubility of various salts in bittern, the magnesium salts are purified. The conventional evaporation crystallization process used to separate the bittern demands high energy consumption and has low thermodynamic efficiency. Therefore, the multi-effect evaporation (MEE), thermal vapor recompression (TVR) heat pump and mechanical vapor recompression (MVR) heat pump technology were applied to the conventional evaporation crystallization process. The MVR and TVR technology can both make full use of the secondary steam heating materials that will save energy. In addition, Aspen Plus (Version 7.3) was used to simulate the processes of the electrolyte-containing system under the ELECNTRAL thermodynamic model. For the better evaluation of various evaporation crystallization processes, some important evaluation indexes, such as energy consumption, annual total cost (ATC) and exergy loss were chosen as objective functions. Compared with the double-effect evaporation crystallization process coupled with TVR heat pump technology, the results indicated that the double-effect evaporation crystallization process coupled with MVR heat pump technology can save energy consumption and ATC by 80.52% and 15.32% respectively. Furthermore, the MVR heat pump technology takes the lowest effective energy loss, which is a more competitive factor of evaporation crystallization process of bittern.
Abstract: This work keeps an eye on the energy saving research on evaporation crystallization process of bittern. Based on the thermo sensitivity of solubility of various salts in bittern, the magnesium salts are purified. The conventional evaporation crystallization process used to separate the bittern demands high energy consumption and has low thermodynam...
Show More
-
Economic Analysis of Isoprene Production from Good Year Scientific Process
Usman Asghar,
Ayesha Masoom,
Adan Javed,
Ayesha Abbas
Issue:
Volume 8, Issue 3, May 2020
Pages:
63-69
Received:
28 March 2020
Accepted:
15 April 2020
Published:
13 July 2020
Abstract: The isoprene rubber is very much like natural rubber but made artificially or synthetically. Essentially similar to natural rubber in properties, this rubber may be somewhat weaker because it is not 100% the cis-isomer. This rubber is used in the same type of products as natural rubber. About 95% of isoprene production is used to produce cis-1,4-polyisoprene, a synthetic version of natural rubber. The growing demand for fuel efficiency and eco-friendly tires is driving the tire industry and in turn the demand for polyisoprene in the tire industry. The Isoprene Market was valued at USD 1.93 billion in 2015 and is projected to reach USD 2.96 billion by 2021. The isoprene demand in Pakistan will increase up to 24.8% from 2018 to 2025 reportedly. The isoprene market is increasing due to its increasing applications in tires, conveyor belts, hoses, molded rubber, and also in medical equipment such as gloves and balloons. Isoprene can manufacture from four different processes at commercial scale, but Isoprene from formaldehyde is the prevailing process in the industries. This process has disadvantage of low yield and by-products. So this process is further modified to improve the yield and the operating conditions. But still by-products are the main problems which decreases the selectivity and yield. To overcome these issues, manufacturing of Isoprene from propylene is studied in plant design project. It is found that this process has 65% yield and have selectivity of 95%. A cost Analysis was made after the design of different plant equipment, and it is found that a plant of 12000 tons per year has payback period of approximately 4 years.
Abstract: The isoprene rubber is very much like natural rubber but made artificially or synthetically. Essentially similar to natural rubber in properties, this rubber may be somewhat weaker because it is not 100% the cis-isomer. This rubber is used in the same type of products as natural rubber. About 95% of isoprene production is used to produce cis-1,4-po...
Show More
-
Sorption Isotherm of Corn Chips Made from Blends of Corn Flour and Bambara Groundnut Nut Flour
Babatunde Kazeem Adeoye,
Charity John Oladejo,
Adegbola David Adeniran,
Habeebah Titilola Opawuyi
Issue:
Volume 8, Issue 3, May 2020
Pages:
70-75
Received:
29 May 2020
Accepted:
15 June 2020
Published:
28 July 2020
Abstract: The adsorption equilibrium moisture contents of corn chips (kokoro) made from blends of maize flour and Bambara nut flour was investigated by measuring water activities at 27°C, 37°C and 40°C using the static gravimetric method. Sorption isotherms followed a type II shape in water activities range from 0.10 - 0.80 showing characteristics of most biological tissues. Five isotherm model equations were used which are BET, GAB, Oswin, Halsey and Henderson. The experiments were performed using polythene packaging and exposed petri dishes. The samples were weighed at two days interval until equilibrium was attained when three identical measurements were obtained. The equilibrium moisture content (EMC) decreased with increase in temperature at constant water activity and polythene packaging had lower EMC compared to petri-dishes. Oswin and Henderson model were best fit at 27°C with RSS = 1.929×10-5, SEE = 0.00011, R2 = 0.99531 and RSS = 0.001192, SEE = 0.00011, R2 = 0.9807 for polythene and petri-dish respectively. Oswin model was best fit for both storage conditions at 37°C and 40°C. The monolayer moisture content at the three temperatures ranged from 0.0193 - 0.0752 and the general model observed for this study that could predict the sorption behavior of Bambara-corn chips was Oswin model.
Abstract: The adsorption equilibrium moisture contents of corn chips (kokoro) made from blends of maize flour and Bambara nut flour was investigated by measuring water activities at 27°C, 37°C and 40°C using the static gravimetric method. Sorption isotherms followed a type II shape in water activities range from 0.10 - 0.80 showing characteristics of most bi...
Show More