Life Cycle Assessment of a Biodiesel Production Unit
Priscilla Sieira,
Erick B. F. Galante,
Alvaro J. Boareto Mendes,
Assed Haddad
Issue:
Volume 3, Issue 2, March 2015
Pages:
25-29
Received:
15 March 2015
Accepted:
3 April 2015
Published:
14 April 2015
Abstract: Carbon dioxide is one of the main compounds pointed as a cause for climate changes, mainly due to the accelerated use of fossil fuels. In order to measure the consumption of the resources that generate carbon dioxide and verify these compounds emissions, quantitative studies aren’t sufficient, but it is needed a proportion relation with the environmental impact. Hence, Life cycle analysis (LCA) studies are used to establish parameters to this relation, orientating which is the best way to be followed and also estimating, as close as possible to the reality, the degree of impacts that can be caused. In this paper a biodiesel plant LCA study is realized, using the model described in ISO 14040 groups. Biodiesel is an alternative renewable fuel to the common diesel. Despite been considered a “clean” fuel, its fabrication process involves environmental impacts. This paper quantifies those impacts, from a theoretical biodiesel plant data, and compares them with those generated on the biodiesel production. The conclusions achieved are that the carbon dioxide generated is greater than the consumed during the entire biodiesel life cycle. However, the biodiesel production generates about 174 times less carbon dioxide than the refining to obtain diesel. Besides, both diesel and biodiesel are responsible for Nitrogen oxide emissions (qualitatively) and it is possible estimate that the environmental impact generated by those emissions is similar between these fuels.
Abstract: Carbon dioxide is one of the main compounds pointed as a cause for climate changes, mainly due to the accelerated use of fossil fuels. In order to measure the consumption of the resources that generate carbon dioxide and verify these compounds emissions, quantitative studies aren’t sufficient, but it is needed a proportion relation with the environ...
Show More